
Introducing Subchromosome Representations to
the Linkage Learning Genetic Algorithm

Ying-ping Chen1 and David E. Goldberg2

1 Department of Computer Science and Department of General Engineering
University of Illinois, Urbana, IL 61801, USA

ypchen@illigal.ge.uiuc.edu
2 Department of General Engineering

University of Illinois, Urbana, IL 61801, USA
deg@uiuc.edu

Abstract. This paper introduces subchromosome representations to the
linkage learning genetic algorithm (LLGA). The subchromosome repre-
sentation is utilized for effectively lowering the number of building blocks
in order to escape from the performance limit implied by the convergence
time model for the linkage learning genetic algorithm. A preliminary
implementation to realize subchromosome representations is developed
and tested. The experimental results indicate that the proposed repre-
sentation can improve the performance of the linkage learning genetic
algorithm on uniformly scaled problems, and the initial implementation
provides a potential way for the linkage learning genetic algorithm to
incorporate prior linkage information when such knowledge exists.

1 Introduction

Linkage learning, which makes genetic algorithms (GAs) capable of detecting
associations among genes and properly arranging these closely related genes
to form building blocks, is one of the key challenges of the genetic algorithm
design. In order to ensure a genetic algorithm works well, the building blocks
represented on the chromosome have to be tightly linked. Otherwise, studies [1,
2] have shown that a genetic algorithm may fail to solve problems without such
prior knowledge. One way to alleviate the burden of choosing an appropriate
chromosome representation for genetic algorithm users is to employ the genetic
linkage learning technique. Among the existing linkage learning methods, such as
perturbation-based techniques [3,4], model builders [5,6,7], and linkage learners
[8,9], is the linkage learning genetic algorithm (LLGA), which uses an evolvable
genotypic structure capable of learning genetic linkage during the evolutionary
process through its special expression mechanism.

While LLGA achieved successful linkage learning on problems with badly
scaled building blocks, it was less successful on problems consisting of uniformly
scaled building blocks. The convergence time model for LLGA [10] explains
the difficulty faced by LLGA and indicates the performance limit of LLGA on
uniformly scaled problems. This paper seeks to enhance the design of LLGA
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972 Y.-p. Chen and D.E. Goldberg

based on the time models in order to improve the performance of LLGA on
uniformly scaled problems.

In particular, this paper introduces subchromosome representations to
LLGA. The subchromosome representation is developed to avoid the perfor-
mance limit implied by the convergence time model for LLGA. This paper pre-
sents a preliminary implementation of the proposed representation and verifies
the performance improvement with empirical results. The objective of this study
is to initiate a better design of LLGA that can lead to scalable genetic linkage
learning.

This paper is organized as follows. The next section gives a brief review of
the linkage learning genetic algorithm. Section 3 describes the subchromosome
representation proposed in this paper in detail. The experiments for observing
the effect of using subchromosomes and the experimental results are presented
in Sect. 4. Finally, we outlined future research directions followed by conclusions.

2 Review of the Linkage Learning Genetic Algorithm

This section reviews key elements of the linkage learning genetic algorithm
(LLGA) [11]. LLGA is capable of learning genetic linkage in the evolutionary pro-
cess without the help of extra measurements and techniques. A modified version
of LLGA working with promoters [12] is used in this study and described in this
section. Readers may consult other materials [11,12] for detailed information.

2.1 Chromosome Representation

The LLGA’s chromosome representation is mainly composed of moveable genes,
non-coding segments, probabilistic expression, and promoters. Moveable genes
are encoded as (gene number, allele) pairs on the LLGA chromosome, and an
LLGA chromosome is considered as a circle. These genes are allowed to move
around and reside anywhere in any order on the chromosome. Non-coding seg-
ments are inserted into the chromosome to create an evolvable genotype capable
of learning linkage. Non-coding segments act as non-functional genes residing
between functional genes to form gaps for precisely expressing genetic linkage.

Probability expression (PE) was proposed to preserve building-block level
diversity. For each gene, all possible alleles coexist in a PE chromosome at the
same time. For the purpose of evaluation, a chromosome is interpreted with a
point of interpretation (POI). The allele for each gene is determined by the order
according to which the chromosome is traversed clock-wisely from the point of
interpretation. A complete string is then expressed and evaluated.

Consequently, each PE chromosome represents not just a single solution but
a probability distribution over the range of possible solutions. If different points
of interpretation are selected, a PE chromosome might be interpreted as different
solutions. Furthermore, the probability of a PE chromosome to be expressed as
a particular solution depends on the length of the non-coding segment between
genes critical to that solution. It is the essential technique of LLGA to capture
the knowledge about linkage and to prompt the evolution of linkage.
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Fig. 1. After selecting the grafting point
on the recipient, the nearest promoter be-
fore the grafting point is then the point of
interpretation of the offspring.
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Fig. 2. After selecting the cutting point
on the donor, the genetic material after
the cutting point and before the current
point of interpretation is transferred.

The use of promoters, which were called start expression genes, was proposed
[12] in LLGA to handle separation inadequacy and to improve nucleation poten-
tial. Promoters are special non-functional elements on the chromosome. While in
LLGA without promoters, all genes and non-coding segments can be the points
of interpretation of the child created by crossover, only promoters can be the
points of interpretation in LLGA with promoters.

2.2 Exchange Crossover

The exchange crossover operator is another key mechanism to make LLGA capa-
ble of learning genetic linkage. It is defined on a pair of chromosomes. One of the
two chromosomes is the donor, and the other is the recipient. Exchange crossover
cuts a random segment of the donor, selects a grafting point on the recipient,
and grafts the segment onto the recipient. The grafting point is the point of
interpretation of the offspring. Starting from the point of interpretation, redun-
dant genetic materials caused by injection are removed right after crossover to
ensure the validity of the offspring.

In LLGA with promoters, although the grafting point can still be any ge-
nes or non-coding segments, the point of interpretation of the offspring is no
longer the grafting point. Instead, the new point of interpretation is the nea-
rest promoter before the grafting point on the chromosome. After the grafting
point is randomly chosen, the first promoter in front of the grafting point is the
point of interpretation of the offspring. The genetic material is then transferred
in the following order: (1) the segment between the promoter and the grafting
point, (2) the segment chosen from the donor, and (3) the rest of the recipient.
Figure 1 shows how promoters work, the black filled circles are promoters of
the chromosome. Exchange crossover in LLGA with promoters selects only one
cutting point at random. The other cutting point is always the element (either
functional or non-functional) just before the point of interpretation of the donor.
Figure 2 shows the genetic materials to be transferred during a crossover event.
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2.3 Linkage Learning Mechanisms

With the integration of PE and exchange crossover, LLGA is capable of solving
difficult problems without prior knowledge of good linkage. Traditional GAs
have been shown to perform poorly on difficult problems [1,2] without such
knowledge. To better decompose and understand the behavior of LLGA, two
key mechanisms of linkage learning, linkage skew and linkage shift, have been
identified and analyzed [11]. Both mechanisms make the building block’s linkage
tighter. With these two mechanisms, the linkage of building blocks can evolve,
and tightly linked building blocks are formed during the process.

Quantifying Linkage. For studying the linkage learning process, a proposed
definition for quantifying linkage [11] is adopted. The linkage is the sum of the
square of the inter-gene distances of a building block, considering the chromo-
some to be a circle of circumference 1. The definition is appropriate in that the
linkage specifies a measure directly proportional to the probability for a building
block to be preserved under exchange crossover.

Linkage skew. Linkage skew, the first linkage learning mechanism [11], occurs
when an optimal building block is successfully transferred from the donor onto
the recipient. The conditions for an optimal building block to be transferred are
(1) the optimal building block resides in the cut segment, and (2) the optimal
building block gets expressed before an inferior one does. The effect of linkage
skew was found to make linkage distributions move toward higher linkages by
eliminating less fit individuals. Linkage skew does not make the linkage of a
building block of any particular individual tighter. Instead, it drives the whole
linkage distribution to a higher state.

Linkage shift. Linkage shift is the second linkage learning mechanism [11]. It
occurs when an optimal building block resides in the recipient and survives a
crossover event. For the optimal building block to survive, there cannot be any
gene contributing to a deceptive building block transferred. Linkage shift gets
the linkage of a building block in an individual higher with deletion of duplicate
genetic material caused by injection of exchange crossover. Compared to linkage
skew, linkage shift gets linkage of building blocks in each individual higher.

2.4 Time Models

LLGA has been studied on problems containing multiple building blocks in two
forms—the uniformly scaled problem and the exponentially scaled problem—not
only because of their prevalence in the literature but also because they are ab-
stract versions of many decomposable problems [13]. Uniformly scaled problems
resemble those with subproblems of equal importance, and exponentially scaled
problems represent those with subproblems of distinguishable importance. As re-
ported previously [11], when the building blocks of a problem are exponentially
scaled, LLGA can solve the problem in a linear time function of the number of
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building blocks. However, when the building blocks are uniformly scaled, LLGA
either needs a population size that grows exponentially with the problem size
or takes exponential time to converge. In order to explain LLGA’s seemingly
inconsistent behavior, the following time models were previously proposed to
understand how LLGA works.

Tightness Time. Tightness time was proposed [14] to model the time for
learning genetic linkage of a single building block of order-k. By extending linkage
skew and linkage shift, tightness time was expressed as

t′�(ε) =
k2

2cs
log

ε

ε0
, (1)

where ε = 1 − λ, λ is the given linkage, k is the order of the building block, c
and cs are constants. The model shows that tightness time is proportional to the
square of the order, k, and to the logarithm of the desired linkage.

Convergence Time. Based on the tightness time model for a single building
block, a convergence time model for LLGA was developed [10] to model the
LLGA convergence on multiple uniformly scaled building blocks. First, the se-
quential behavior of LLGA, which indicates that LLGA works on both uniformly
scaled and exponentially scaled building blocks one by one, was identified. Then,
the first-building-block model, which assumes that the convergence time is an ac-
cumulation of the time to tighten the first building block, was proposed to model
the sequential behavior. Considering the effect and interaction of coexisting uni-
formly scaled building blocks by using the probability of linkage learning events,
the connection between tightness time and the sequential behavior were establis-
hed. By integrating these models, the LLGA convergence time model for certain
desired linkage can be presented as

tc(m, ε) =
(

k2(k + 1)
2cs

√
2π

log
ε

ε0

) m∑
i=1

2i

i
√

i
+ tc0 , (2)

where cs and tc0 are constants, m is the number of uniformly scaled building
blocks, k is the order of a building block, ε = 1−λ, and λ is the desired linkage.

2.5 Limit to LLGA’s Competence

Although the proposed LLGA convergence time model [10] describes the way
LLGA works on uniformly scaled problems and explains LLGA’s inconsistent
behavior on problems composed of building blocks of different scalings, it also
reveals a critical limit to the competence in LLGA that the time for LLGA to
solve uniformly scaled problems grows exponentially with the number of building
blocks. Because the parameters involved in the convergence time model are the
properties of the problem to solve, little guidance can be obtained from the mo-
del for setting the existing algorithmic parameters of LLGA. Therefore, instead
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Subchrom. 1 Subchrom. 2 Subchrom. N

Fitness

Complete LLGA Chromosome

Fig. 3. The structure of a subchromosome is identical to that of an LLGA chromo-
some. Each subchromosome contains moveable genes, non-coding segments, as well as
promoters and is interpreted with probabilistic expression. The union of all subchro-
mosomes belonging to one individual forms a complete LLGA chromosome. The fitness
corresponding to the solution obtained from interpreting the complete chromosome is
considered the fitness of each subchromosome.

of adjusting those algorithmic parameters, another way to improve LLGA’s per-
formance on uniformly scaled problems has to be taken. This paper seeks a new
design to enhance LLGA based on the insight provided by the convergence time
model and takes an initial step to realize the design.

3 Subchromosome Representations

According to the LLGA convergence time model described by Equation (2), one
possible way to enhance LLGA’s performance on uniformly scaled problems is
to modify the chromosome representation used by LLGA such that the number
of building blocks, m, is effectively lowered at run time. Thus, the exponential
growth of convergence time can be reduced. This section introduces the sub-
chromosome representation to the linkage learning genetic algorithm. The sub-
chromosome representation is first described in detail, and then, the exchange
crossover operator for handling subchromosome representations is discussed.

3.1 Chromosome Representation

The subchromosome representation in LLGA separates a LLGA chromosome
into several parts, called subchromosomes. The structure of a subchromosome is
identical to that of an LLGA chromosome. Like an LLGA chromosome described
in Sect. 2, a subchromosome contains moveable genes, non-coding segments, as
well as promoters and is interpreted with probabilistic expression. The union of
all subchromosomes belonging to one individual forms a complete LLGA chro-
mosome. In subchromosome representations, there is no separate fitness measu-
rement for each subchromosome. The fitness that corresponds to the solution
obtained from interpreting the complete chromosome is used by all subchromo-
somes. Figure 3 shows an LLGA chromosome consisting of subchromosomes.

The goal of subchromosome representations is to create a flexible encoding
mechanism that makes LLGA chromosomes capable of grouping closely related
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Subchrom. N

Subchrom. 1 Subchrom. 2 Subchrom. N

Injection

Subchrom. 1 Subchrom. 2

Donor

Recipient

Fig. 4. For a pair of subchromosomes, the exchange crossover operator works as it does
on conventional LLGA chromosomes. The operator cuts the genetic materials from the
subchromosome of the donor and injects them into the corresponding subchromosome
of the recipient. The transferred genetic materials are determined at random for each
pair of subchromosomes.

building blocks to form higher-level building blocks in addition to moving ge-
nes together on the chromosome to form the first-level building blocks. Similar
to linkage learning, the process of forming higher-level building blocks should
be integrated with the evolutionary and problem-solving process. The subchro-
mosomes of an LLGA chromosome shown in Fig. 3 are building blocks of the
second level. The subchromosome representation can be designed to hierarchi-
cally express building blocks of even higher levels, such as the third level, and
so on.

However, as an initial step to realize this representation scheme and as a pilot
study of the effect of using subchromosomes in LLGA, only subchromosomes of
the second level are implemented and examined in this paper. Moreover, the
groups of building blocks are pre-defined, and genes on each subchromosome
do not migrate to other subchromosomes. Within a subchromosome, genes and
non-coding segments are still randomly distributed in initialization as they are
on an LLGA chromosome without subchromosomes.

3.2 Exchange Crossover

Due to the adoption of the new representation, the exchange crossover operator
is modified to handle subchromosomes. Since in this paper, the subchromosomes
are pre-defined and do not exchange genetic materials with one another as dis-
cussed in the previous section, for simplicity, after determining the donor and the
recipient, the exchange crossover operator works on subchromosomes one by one.
For a pair of subchromosomes, one from the donor and the other from the reci-
pient, exchange crossover works as it does on conventional LLGA chromosomes
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as described in Sect. 2. It cuts the genetic materials from the subchromosome of
the donor and injects them into the corresponding subchromosome of the recipi-
ent. The transferred genetic materials are determined at random for each pair of
subchromosomes. Figure 4 shows how the modified exchange crossover operator
works on a pair of LLGA chromosomes consisting of subchromosomes.

4 Experiments

The experiments to observe the effect of using the subchromosome representa-
tion in LLGA are presented in this section. First, the parameter settings of the
experiments are described in detail. Then, the experimental results are shown
in the remainder of this section.

4.1 Parameter Settings

In this paper, trap functions [15] are used for examining the effect of adopting
subchromosome representations in LLGA because trap functions provide decent
linkage structures among variables, and good linkage is necessary for solving
problems consisting of traps. The experiments in this study were done for order-
4 traps. An order-k trap function can be described by

trapk(u) =
{

u u = k
k − 1 − u otherwise ,

where u is the number of ones in the bitstring. In order to simulate the infinite-
length chromosome, we let one order-4 building block embedded in 250 genes,
including functional and non-functional genes. For example, for five order-4 buil-
ding blocks, the 20 genes are embedded in a 1250-gene chromosome with 1230
non-functional elements. Table 1 lists all experiments conducted in this paper.
The total number of building blocks in one experiment is nbb (the number of
building blocks per subchromosome) × ns (the number of of subchromosomes).
From 2 to 8 building blocks per subchromosome, all conditions for the total num-
ber of building blocks less than or equal to 60 are included in the experiments.

The gambler’s ruin model [16] is utilized in the present work for population
sizing, which can be approximated with the following formula:

population size n = −2k−1 ln(α)
σbb

√
π(m − 1)
d

, (3)

where k is the order of building blocks, α is the failure probability, σbb is the
standard deviation of the fitness of a building block, m is the total number of
building blocks, and d is the signal, which is adjusted for tournament size s = 3
with the equation [16]

d′ = d + Φ−1
(

1
s

)
σbb ,

where Φ−1(1/s) is the ordinate of a unit normal distribution.
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Fig. 5. Results of the experiments with
less than or equal to 60 building blocks.
The number of building blocks distribu-
ted on each subchromosome varies from 2
to 8. “No Sub” indicates LLGA without
the subchromosome representation.
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Fig. 6. Instead of every pair, only one pair
of subchromosomes is randomly chosen
for applying exchange crossover to reduce
building block disruption. The results in-
dicate that the representation works in the
range of these experiments.

Other parameters are set as follows. The crossover rate is 1.0 such that the
crossover event always happens. The maximum number of generation is 100,000.
The number of promoters on each subchromosome is set to 2m, where m is the
number of building blocks on the subchromosome. Finally, each experiment was
repeated with 50 independent runs.

4.2 Experimental Results

For each experiment listed in Table 1, the success rate is calculated according
to the results obtained in the 50 independent runs. In this paper, a success is
determined by the solution quality. The solution quality is the ratio between the
number of correctly solved building blocks in the end of the run and that of the
total building blocks in the trial. For example, if in a particular run for solving
20 building blocks, 12 building blocks are correctly solved, the solution quality

Table 1. All experiments conducted in this paper. From 2 to 8 building blocks per
subchromosome, all conditions for the total number of building blocks less than or
equal to 60 are included in the experiments of this study.

BBs per Subchromosome (nbb) N umber of Subchromosomes (ns)
2 2, 3, 4, 5, 6, . . . , 26, 27, 28, 29, 30
3 2, 3, 4, 5, 6, . . . , 16, 17, 18, 19, 20
4 2, 3, 4, 5, 6, . . . , 11, 12, 13, 14, 15
5 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
6 2, 3, 4, 5, 6, 7, 8, 9, 10
7 2, 3, 4, 5, 6, 7, 8
8 2, 3, 4, 5, 6, 7
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of this run is 0.6. If the final solution quality of a run is equal to or greater
than 0.9, the run is recorded as a success. The success rate is therefore the ratio
between the number of success trials and that of the total runs.

Figure 5 gives the success rates of all the experiments with the total number
of building blocks less than or equal to 60 as listed in Table 1. The number of buil-
ding blocks distributed on each subchromosome varies from 2 to 8. The results
for each number of building blocks on subchromosomes are shown in different
line-point styles. As shown in Fig. 5, utilizing subchromosome representations
in LLGA can significantly improve the performance of LLGA on the uniformly
scaled problems. Compared to the results reported elsewhere [12], LLGA with
the subchromosome representation can solve uniformly scaled problems about
five times larger in terms of the number of building blocks than that can be
solved by LLGA without subchromosomes.

Figure 5 also shows that the limit for LLGA with the subchromosome re-
presentation to solve uniform scaled problems in terms of the total number of
building blocks seems to be around 50. Even with different numbers of building
blocks distributed on subchromosomes, no success trial was found among all
the experiments with totally 60 building blocks. However, the procedure to ap-
ply exchange crossover on subchromosomes in these experiments causes serious
building block disruption, as it does in LLGA without subchromosomes. While
the original design of LLGA prevents us from lowering the disruption rate and
maintaining the mixing rate at the same time, LLGA with the subchromosome
representation provides us a viable way to appropriately adjust the probability
for applying the operator. Therefore, the crossover operator is slightly modi-
fied as follows. Instead of every pair, only one pair of subchromosomes is now
randomly chosen for applying exchange crossover to reduce building block dis-
ruption. The previous experiments were repeated for nbb = 5 and 6 to check the
effect of adjusting the probability. The results are shown in Fig. 6 and indicate
that the representation works in the range of these experiments.

5 Future Work

These results are tantalizing in that parallel evolution of linkage of large num-
ber of gene groupings has been demonstrated provided the appropriate genes
are associated in the same linkage group. The key challenge left is to develop
mechanisms to permit or encourage the evolution of these proper associations.
Different mechanisms can be imagined for this purpose, and the potential of each
is briefly outlined in the following paragraphs.

Gene migration: Gene migration moves genes among subchromosomes within
one chromosome. Proper associations can be achieved through gene migra-
tion and favored by the the evolutionary process.

Gene duplication or redundant genes: Redundant genes can provide hig-
her probabilities to form correct gene groups or clusters within subchromo-
somes.

Adaptive expression: Adaptive expression can resolve the conflicts caused by
gene duplication and promote those identified building blocks.
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Before running off to do more mass quantities of computation, however, we
should think carefully about the key lessons of this paper. In going from the
limited results of Fig. 5 to the much better results of Fig. 6, we recall that the
primary difference was the limited amount of mechanical disruption that was
permitted in the modified subchromosome crossover. In looking back over all
studies of LLGA to this point, it is clear that these procedures can only tolerate
a certain amount of rearrangement disruption. Large amounts of fitness variance
are not problematic because they can be overcome through larger populations;
however, attempts to move too much material around have always caused a com-
binatorial overload that cannot be sorted out. In designing mechanisms to move
genes around either physically or virtually, we must recognize that the overall
structure can assimilate only so much movement at any one time. Attention to
this should guide the design of mechanisms to realize the potential of LLGA.

6 Summary and Conclusions

This paper started with a brief review of the linkage learning genetic algorithm,
including the chromosome representation, exchange crossover, linkage learning
mechanisms, and time models. The subchromosome representation was develo-
ped and employed in the linkage learning genetic algorithm for effectively lowe-
ring the number of building blocks to escape from the limit implied by the con-
vergence time model. An initial step to realize subchromosome representations
in the linkage learning genetic algorithm was taken in this work. The preliminary
experimental results of using subchromosomes in the linkage learning genetic al-
gorithm indicated that the proposed scheme can improve the performance of the
linkage learning genetic algorithm on uniformly scaled problems.

In addition to showing that the subchromosome representation helps the lin-
kage learning genetic algorithm to solve larger uniformly scaled problems, the
initial step for implementing the proposed representation in the current work also
leads a possible way in making the linkage learning genetic algorithm capable of
incorporating prior linkage information. With the use of subchromosomes, the
distribution of genes, non-coding segments, and building blocks can be determi-
ned according to the available linkage information of the problem. In the linkage
learning genetic algorithm without subchromosomes, utilizing prior linkage in-
formation is extremely difficult if not impossible. Overall, the results reveal a
promising path for achieving scalable genetic linkage learning techniques.
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